Efficient and Enhanced Data Mining Approach for Recommender System

نویسندگان

  • Neha Verma
  • Aditya Verma
چکیده

In this article we present an explanation of how recommender systems are related to some traditional database analysis techniques. We examine how recommender systems help E-commerce sites increase sales and analyze the recommender systems at six market-leading sites. Based on these examples, we create a taxonomy of recommender systems, including the inputs required from the consumers, the additional knowledge required from the database, the ways the recommendations are presented to consumers, the technologies used to create the recommendations, and the level of personalization of the recommendations. Recommender systems are being used by an ever-increasing number of E-commerce sites tohelp consumers find products to purchase. What started as a novelty has turned into a serious business tool. Recommender systems use product knowledge – either hand-coded knowledge provided by experts or “mined” knowledge learned from the behavior of consumers – to guide consumers through the often-overwhelming task of locating products they will like. We identify five commonly used Ecommerce recommender application models, describe several open research problems in the field of recommender systems, and examine privacy implications of recommender systems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Evaluation of recommender systems: A multi-criteria decision making approach

The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012